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Form and Capacitance of Parallel-Plate Capacitors 
Hitoshi Nishiyama and Mitsunobu Nakamura 

Abstruct- In basic electrostatics, the formula for the capac- 
itance of parallel-plate capacitors is derived, for the case that 
the spacing between the electrodes is very small compared to 
the length or width of the plates. However, when the separation 
is wide, the formula for very small separation does not provide 
accurate results. In our previously published papers, we use the 
boundary element method (BEM) to derive formulas for the 
capacitance of strip and disk capacitors that are applicable even 
when the separation is large. In this paper, we present results 
and formulas for the capacitances of square and rectangular 
capacitors. 

I. INTRODUCTION 

HE approximate capacitance of parallel-plate capacitors T is derived in simple electrostatics for the case in which the 
electric charge density on the plates is uniform and the fringing 
fields at the edges can be neglected [l]. The capacitance Co[F] 
is 

where t [ F / m ]  is the dielectric constant, S[m2] is the area 
of the plates (assured equal), and d[m] is the separation of 
the two electrode plates. The total charge Qo[C] and the 
uniform surface change density go[C/m2] on the plates are, 
respectively, 

tSV 
d 

&o = cov = -[C] 

and 

(3) 

where V[V]  is the potential difference between the two elec- 
trode plates. 

Equations (l), (2), and (3) hold when d is far smaller 
than the plate width. As d becomes large compared to the 
smallest dimension of the plates, the equations do not provide 
accurate results. However, for some practical problems the 
plate separation is wide, and forumlas for the capacitance of 
capacitors with large plate separation are required [2]. 

The edge effect of a capacitor can be treated by rigorously 
solving the Laplace equation. Some papers for edge correction 
of a strip capacitor [3]-[7] and a disk capacitor [8], [9] 
have been published. We computed the capacitance of strip 
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and disk capacitors by the boundary element method (BEM) 
and derived new empirical expressions for the capacitance. 
The capacitance values of microstrip lines and disk capacitor 
calculated by the new expression agreed well with results of 
other analytical expressions and with measured data [lo], [ l l l .  
In this paper results for the normalized capacitance of the 
parallel-plate rectangular capacitor are computed by the same 
method. 

In Section 11, the BEM for the calculation of capacitance of 
the parallel-plate rectangular capacitors is presented. In Section 
111, the charge distribution densities on the electrode plate of 
parallel-plate square capacitors are computed and compared 
with those of strip and disk capacitors. In Section IV, ca- 
pacitance of the parallel-plate square capacitors is computed, 
and a new empirical expression for the capacitance is derived 
from the numerical results. The capacitance of a parallel-plate 
rectangular capacitors is also given in this section. In Section 
V, a discussion and conclusion concerning the capacitance of 
the parallel-plate capacitors are presented. 

11. BOUNDARY ELEMENT METHOD FOR PARALLEL-PLATE 
RECTANGULAR CAPACITORS 

The basic field equation for the calculation of capacitance 
of capacitors is the Laplace equation for the electrostatic field: 

(4) v 2 u  = 0. 

The mathematical formulation of the BEM is given in [12] 
and [ 131. We have given the results for the parallel-plate strip 
capacitor [lo] and the parallel-plate disk capacitor [ l l ] .  In 
this paper, the BEM for the calculation of capacitance of 
parallel-plate rectangular capacitors is presented. 

The parallel-plate rectangular capacitors in an infinite space 
are divided into mn boundary segments with equal area (= 
wL/mn) in Fig. 1, where w is the width of the rectangular 
plate and L is the length of the rectangular plate. The identifier 
of the boundary elements of plates is denoted as 1 - 2 mn. In 
the general BEM, electrode plates are not always divided into 
boundary elements with equal area, but in this problem the 
equal division makes the numerical procedure of calculation 
easy and efficient. Here, the simplest approximation for the 
surface density charge in a boundary element is adopted, and 
it is assumed that (grad u)'6 is constant for each element 
(constant element method). Then, the Green solution [ 121, 
[131 is 
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D i v i d e d  i n t o  m s e g m e n t s  

Fig. 1 .  Model of a parallel-plate rectangular capacitor 

(i = 1,2 ,3 , . . . ,2mn)  . 
Here, R j  is the area of the jth element and the integration 

is carried out on Rj.  q is the surface charge divided by 
permitivity of medium. The discrete form of (6) is 

These integrations can be done analytically. The bounds of 
integrations are 

2k - 1 IC' 
m m 

IC' - 1 
g=- ~ , h =  - w , X =  - (11) 2m w' 

(12) 
1' - 1 1' 21 - 1 

n n 2n L,q = -L ,Y = - L, p = -  

i = m(k - 1) + l , j  = m(k' - 1) + l', 

( I  = 1 , 2 , 3 , . . - , n ) ,  (1' = 1 , 2 , 3 , . . - , n ) .  

(13) 
(14) 
(15) 

( I C  = 1,2 ,3 , .  . . , m), (IC' = 1,2,3, .  . . , m), 

Equation (7) is expressed as a matrix of order 2mn that is 

and 
S F  

= [F S ]  

where S and F with order mn are the submatrixes of [A]. 
Their elements are presented by (9) and (10). {q} is a column 
of unknown q j ,  and {U} is a column whose upper mn 
components are 1/2[V] and whose lower mn components 
are -1/2[V]. The charge of each boundary element of plates 
is given by the solution of (16). The capacitance CR[F] is 
presented by considering VR = 1[V]: 

mn 2 mn 

j=1 j = m n + l  

where wL/mn is the area of each boundary element. 
= Csijqj + f i jq j  (7) The calculation of the capacitance of the parallel-plate 

square capacitor Cs[F] is presented by considering L = w, 
n = m, and Vs = 1[V]: 

where 

q j  = [(grad u'.']j on Qj. 

Sij is the boundary integration between the elements on the 
same rectangular plate, and fij is the boundary integration 
between the elements on the opposite rectangular plate. The 
potential of the plates is set to l/2[V] and -l/2[V], with 
vanishing potential at infinity. The choice of plate potentials 
(1/2[V] and -1/2[V]) is justified only in the symmetric 
plate situation. This leads to improved calculation speed 
and accuracy. By putting r' on the center of each boundary 
element and accounting for boundary conditions, the boundary 
integrations become 

and 

1 

J ( x  - X ) 2  + (y - Y ) 2  + d2 
f . .  - L j q  j h  d x d y .  (10) 
23 - 4r 

A model of a parallel-plate square capacitor is presented in 
Fig. 2. 

111. CHARGE DISTRIBUTION ON PLATES 

A. Charge Distribution of the Parallel-Plate Square Capacitor 

The charge distribution on the plates of a parallel-plate 
square capacitor is computed. To accomplish this, we apply 
the LU decomposition method [I41 to the solution of linear 
equation (16). In Fig. 3 the normalized charge density on the 
square plates calculated by the BEM is plotted against the 
normalized position along the half width of the plate, taking 
b as the parameter. The normalized charge density (TSN is 
defined as the charge density divided by use, i.e., 
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Fig. 2. Model of a parallel-plate square capacitor. 
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Fig. 3. 
by width of the square for b = 0.1, l .  10. 

Normalized charge density on the plates against location normalized 

where OS is the charge density computed by the BEM for the 
parallel-plate square capacitor, os0 is the charge density in 
simple electrostatics given by (21), 

and b is the aspect ratio that is given by (22): 

d plate separation 
w plate width 

b = - =  = aspect ratio. (22) 

In Fig. 3 the normalized charge densities are shown, respec- 
tively, for b = 0.1,1,10, where the solid lines are normalized 
charge density on the plate along the section A-A in Fig. 2, that 
is, the center of the square plate, and the dotted lines are the 
normalized charge density on the plate along the section B-B in 
Fig. 2, that is, the end of the square plate. In both sections A-A 
and B-B, the normalized charge density at the edges becomes 
much larger than that at the center even when b is small. The 
normalized charge density for b = 10 along the section B-B is 
so large that it can not be presented in Fig. 3. The assumption 
that the density is uniform does not hold until b becomes very 
close to zero. The normalized charge density along section 
B-B is always larger than that along section A-A in same 
aspect ratio, and the normalized charge density at the edge 
along section A-A equals that at the center along section B-B 
in same aspect ratio. As b increases, the normalized density 

of charge becomes large, though the total charge decreases. 
And even the normalized density at the center is much greater 
than CO. In the limiting case of b + 00, os equals the charge 
density of the one square capacitor in an infinite space. 

B. Form and Charge Distribution of the 
Parallel-Plate Capacitors 

In our previous published paper, the normalized charge 
distribution on plates of a parallel-plate strip capacitor and 
a parallel-plate disk capacitor are presented [lo], [ll]. Here 
we consider the charge distribution of the parallel-plate strip 
capacitor, the parallel-plate disk capacitor, and the parallel- 
plate square capacitor. The normalized charge density of the 
parallel-plate strip capacitor (TPN and that of the parallel-plate 
disk capacitor CTDN is defined as the charge density divided 
by 0p0 and ODO, i.e., 

(23) 
U P  O D  

OPN = ~ and UDN = - 
OPO OD0 

where 
EVP EVD 

0p0 = -[C/m2] and ODO = -[C/m2]. (24) d d 
where OP and OD are the charge density computed by the 
BEM, op0 and ODO are the charge density from simple 
electrostatics, respectively, for the parallel-plate strip capacitor 
and the parallel-plate disk capacitor. 

The aspect ratio of the parallel-plate strip capacitor is given 
by (22), and that of the parallel-plate disk capacitor is defined 
as 

d plate separation 
2R plate diameter 

b = - =  = aspect ratio. (25) 

In Fig. 4 the normalized charge densities along the half 
width (for the parallel-plate strip, square and rectangular 
capacitor) or the radius (for the parallel-plate disk capacitor) of 
the plates calculated by the BEM are plotted, for b = 1.0. The 
normalized charge density at the edges becomes much larger 
than that at the center for all three types of capacitors. The 
normalized charge density of the parallel-plate square capacitor 
is larger than that of the parallel-plate strip capacitor. Also, the 
normalized charge density of the parallel-plate disk capacitor is 
larger than that of the parallel-plate square capacitor along the 
center (section A-A). However, the normalized charge density 
of the parallel-plate square capacitor along the edge (section 
B-B) is larger than that of the parallel-plate disk capacitor. 

IV. CAPACITANCE 

A. Normalized Capacitance of the 
Parallel-Plate Square Capacitor 

capacitor C ~ N  is defined as 
The normalized capacitance of the parallel-plate square 

where 
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Fig. 4. 
disk, and square capacitor. 

Normalized charge density on the palates of the parallel-plate strip, 

Fig. 5 .  Normalized deviation of the parallel-plate square capacitor AC‘s~y 
against aspect ratio b. 

where CS is the capacitance computed by the BEM. The 
accuracy of calculation of CSN improves with the increase 
of m. However, with increasing m the execution time and 
required memory for computation rapidly increase [ 151. To 
overcome this difficulty of the BEM, an extrapolation method 
is applied for m = 10,15,20. This method has been discussed 
in our previous papers [lo], [ l l ] ,  [15], [16]. Particularly, the 
errors of extrapolation method were mentioned in [15]. 

The normalized deviation ACs, is defined as 

In Fig. 5 the normalized deviation is plotted by a solid line 
against the aspect ratio b. 

The fringe field is no longer negligible when b = 1. 
Applying regression analysis to the data of ACSN, a simple 
empirical expression is derived when CLN is 0.1 5 b 5 10.0: 

C k N  = 1 + 2.343b0.891(0.1 5 b < l . O ) ,  (29) 

R e c t a n i u  I a r  

0.0 0 . 2 5  0 . 5  0 . 7 5  1 .0  
1 / b ’  

Fig. 6. 
against aspect ration b’. 

Normalized cpapcitance of the parallel-plate rectangular capacitor 

B. Normalized Capacitance of the Parallel-Plate 
Rectangular Capacitor 

capacitor CRN is defined as 
The normalized capacitance of the parallel-plate rectangular 

where 

CR[F] is the capacitance computed by the BEM, w[m] is the 
width of the rectangular plates, and L[m]  is the their length. 
Then the new aspect ratio of the rectangular plates b’ is defined 
as 

L b ‘ =  -. 
W 

(33) 

In Fig. 6 the normalized capacitance CRN is plotted against 
l / b ’  taking b as parameter. As l / b ’  increases, the normalized 
capacitance CRN becomes large. And as b increases, CRN 
becomes large. In the limiting case l / b ’  -+ O(b’ --t CO or L + 

CO), the normalized capacitance of the parallel-plate rectangu- 
lar capacitor CRN agrees with that of the parallel-plate strip 
capacitor CPN. And in the limiting case of l /b’  l(b’ + l), 
CRN equals the normalized capacitance of the parallel-plate 
square capacitor CSN.  

C. Comparison of Strip, Disk, Square and 
Rectangular Capacitors 

In this section, we compare the capacitance of parallel-plate 
strip, disk, square, and rectangular capacitors. The normalized 
capacitance of the parallel-plate strip capacitor CPN is defined 
as 

(34) 
CP 

CPO 
C P N  = - 

CLN = 1 + 2.343b0.992(1.0 5 b 5 10.0). (30) 

The relative errors of (29) and (30) against the numerical value 
where 

(35) 
EW 

CPO = $E’/ml computed by the BEM are at most 1.5[%]. 

I 
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TABLE I 
NORMALIZED CAPACRANCE OF PARALLEL-PLATE CAPACITOR FOR GEOMETRICAL FIGURES 

I Aspect ratio I Strip Capacitance I Disk Capacitance I Square Capacitance 

b C D N  C S N  

I 0.1 1.16983 1.31809 I 1.29980 

I I I 

0.2 1.29661 1.58007 1.54987 

0.3 1.41465 1.83007 1.78426 

0.5 1.63226 2.31845 2.23581 

I 0.7 I 1.83463 I 2.80352 I 2.67950 

and Cp is the capacitance of the parallel-plate strip capacitor 
computed by the BEM. The normalized capacitance of the 
parallel-plate disk capacitor CDN is defined as 

where 

(37) 

and CD is the capacitance of the parallel-plate disk capacitor 
computed by the BEM. The normalized capacitance of the 
parallel-plate square capacitor and that of the parallel-plate 
rectangular capacitor already have been defined, respectively, 
as (26) and (31). 

In Fig. 7 the normalized capacitance of the parallel-plate 
capacitors are plotted against the aspect ratio b. In Table I 
the values of normalized capacitance of the parallel-plate 
capacitor are shown. The aspect ratio of the parallel-plate 
strip, square, and rectangular capacitors is defined by (22), 
and that of parallel-plate disk capacitor is defined by (25). As 
b increases, all normalized capacitances increase. However, 
the rate of variations is different for the different forms. To 
make clear the relationship between form and capacitance 
of the parallel-plate capacitors, in Fig. 8 the capacitance of 
the parallel-plate disk capacitor CD [ F ] ,  that of the parallel- 
plate square capacitor C s [ F ] ,  and that of the parallel-plate 
rectangular capacitor C R [ F ]  are plotted against the plate sep- 
aration d[m](l /d[l /m]) .  In Fig. 8 the area of every capacitor 
is defined as S = 1.0[m2], and the dielectric constant is 

defined as E = l .O[F/m]. The dotted line in Fig. 8 is the 
capacitance Co[F] that is given by (1). The solid lines in 
Fig. 8 are the calculated capacitance of the parallel-plate 
disk capacitor CD [ F ] ,  that of parallel-plate square capacitor 
CS [ F ] ,  and that of the parallel-plate rectangular capacitor 
C R [ F ] .  When l /d[ l /m]  is large (d[m] is small), they are 
in proportion to l / d [ l /m] .  However, the rate of variations 
is different for the forms. When l/d[m] is small (d[m] is 
large), the proportion does not hold. It is important that all of 
capacitances (CD, Cs and CR[F])  approach a limiting value 
as l / d  + O[l/m](d + m[m]). 

D. Capacitance of the Parallel-Plate Disk 
Capacitor for  Large Aspect Ratio 

The value of the capacitance of the parallel-plate disk 
capacitor in limiting case of l / d  -+ O[m](d  -+ ~ [ m ] )  is 
considered. The capacitance of single disk capacitor in an 
infinite space is analytically derived [17] as 

CY, = 8 t R [ F ] .  (38) 

When the area of the single disk plate is S = l .0[m2],  the 
radius of the disk plate R[m] is 

R = = E N 0.564[m]. (39) 

The capacitance of a single disk capacitor becomes 

CY, = 8 x l .O[F/m] x 0.564[m] = 4.512[F]. (40) 

r-- 
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Form and normalized capacitance of the parallel-plate capacitors Fig. 9. 
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Form and normalized capacitance of the parallel-plate capacitors 

plate separation d[m]. 

In the limiting case of l / d  + O[l/m](d -+ cm[m]) and for 
the potential at infinity equal to 0 [VI, all field lines are 
generated between the electrode plate and infinity, and no 
field lines are generated between the two electrode plates 
of the parallel-plate disk capacitor. Therefore, the analytical 
capacitance of the parallel-plate disk capacitor in the limiting 
case of l / d  -+ O[l/m](d + ~ [ m ] )  is 

for highly precise measurement of dielectric constant and 
for calculating of capacitance in LSI and microstrip line, 
etc. Therefore, in many previous papers and this paper the 
corrective expression of the capacitance of the parallel-plate 
capacitor were normalized by closely spaced capacitor CO. 
However, for large aspect ratios, the expression would be more 
clearly normalized by the infinite spacing capacitance. 

The new normalized capacitance of parallel-plate disk ca- 
pacitor CbN is defined as 

where CD-(= 4tR) is the infinite spacing capacitance of 
parallel-plate disk capacitor. 

The capacitance of parallel-plate disk capacitor is 

The new normalized capacitance CbN becomes 

(43) 

In Fig. 9 the new normalized capacitance CbN is plotted 
against the aspect ratio b. In the limiting case of b + 0, 
CbN becomes infinity, and in the limiting case of b -+ 

cm, CbN becomes unity asymptotically. When b is larger than 
3, the capacitance of parallel-plate disk capacitor is almost 
determined by the infinite spacing capacitance CD,. 

'6'6 - - - _  ' D  * 4.512 = 2 .256[~]  (41) 

where C; is the capacitance of a single disk capacitor. This 
value agrees very well with the numerical capacitance in 

In simple electrostatics the approximate capacitance of 
parallel-plate capacitors is derived as (1). Many capacitor 

E. New Empirical Expression for the Normalized 
Capacitance of Parallel-Plate Disk Capacitor 2 CDm c;+c; 2 

The estimate for the capacitance of parallel-plate capacitor 

Fig. 8. cNco+coo (45) 

and that of parallel-plate disk capacitor 

C D  8 applications are based on this expression. The exact ca- CDN = - N 1 + -b = 1 + 2.5465b (46) pacitance of the parallel-plate capacitor becomes important COO lr 

r 
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TABLE I1 
NORMALIZED CAPACITANCE OF EMPIRICAL EXPRESSION FOR PARALLEL-PLATE DISK CAPACITOR AGAINST ASPECT RATIO 

Aspect Computed Expression Relative Expression 
ratio by the (46) error of (47) 

b BEM (46) (%) 

1.31809 1.25465 -4.813 1.32132 0.1 

0.2 1.58007 1.50930 -4.479 1.58640 

I 

0.3 1.83007 1.76394 -3.614 1.83342 

0.5 2.31845 2.27324 -1.950 2.29779 

0.7 2.80352 2.78254 -0.748 2.80636 

1 .o 3.53479 3.54648 0.331 3.56381 

2.0 6.01398 6.09296 1.313 6.06441 I XI 1 8.52857 1 8.63944 1 1.300 I 8.54138 

13.59268 13.73240 1.028 13.45302 

7.0 18.67215 18.82535 0.820 

I ~ 10.0 I 26.30143 I 26.46479 I 0.621 I 

are very interesting expressions for simplification and covering 
a wide area of b. The capacitance of parallel-plate disk 
capacitor which is computed by the BEM was compared with 
the previous results [ l  11. The results of the BEM agree well 
with the previous results. Applying the regression analysis to 
the data of the BEM, a simple empirical expression 

CDN = 1 + 2.367b0.867(0.005 5 b 5 0.5)  
CDN = 1 + 2.564b0.982(0.5 5 b 5 5.0)  (47) 

was derived in our published paper [ 1 I]. The relative errors of 
this expression against the numerical values computed by the 
BEM are at most l[%] (0.05 5 b 5 5 ) .  In Table 11, the results 
of (46) and (47) are compared with the results of the BEM. 
Expression (46) provides for a wide range of b, with a few 
errors. The relative errors of (46) against the numerical values 
computed by the BEM are at most 5[%] (0.1 5 b 5 10). This 
decreases with the increase of b. 

V. CONCLUSION 
In this paper the relationship between the form and the 

capacitance of parallel-plate capacitors is considered. When 
l/d[l/m] is large (d[m] is small), the capacitance of the 
parallel plate is in proportion to l /d[l /m].  However, when 
l/d[m] is small (d[m] is large), the proportion does not hold. 
The value of the capacitance of the parallel-plate disk capacitor 
in limiting case of l / d  -+ O[m](d ---f m[m]) is given. For a 
given area and spacing, the capacitance of the parallel-plate 

disk capacitor is the smallest of that for any parallel-plate 
capacitor. This arises because a disk has the smallest ratio of 
edge length to plate area. 

The normalized capacitance of the parallel-plate square 
capacitor and that of the parallel-plate rectangular capacitor are 
calculated by the BEM. Also, a “formula” for the normalized 
capacitance of the parallel-plate square capacitor is presented. 
The empirical formula, which is applicable even when the 
aspect ratio becomes far larger than unity, is derived for the 
normalized capacitance of the parallel-plate square capacitor. 
In the limiting case of l /b’  -+ O(b’ ---f CO or L --t CO), 

the normalized capacitance of the parallel-plate rectangular 
capacitor becomes that of the parallel-plate strip capacitor. 
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